ПРИНЦИП РАБОТЫ: ОХЛАЖДЕНИЕ

1. Презентация

FRIC (функция охлаждения, управляемого компьютером системы впрыска). BRAC (необходимо охладить воздух в кондиционере).

ПРИМЕЧАНИЕ: Функция BRAC встроена в компьютер управления двигателем.

Функция охлаждения предназначена для: :

- Понизить температуру охлаждающей жидкости двигателя
- Охлаждения жидкости, проходящей через конденсатор
- Понизить температуру масла в теплообменнике автоматической коробки передач

АКПП	TU5JP	EW7J4	EW10J4	DW10TD
1 односкоростной	серия	серия	-	-
электровентилятор				
1 двухскоростной	-	-	серия	серия
электровентилятор				
1 three-speed cooling fan	Optional if air con			
	fitted	fitted	fitted	fitted

ПРИМЕЧАНИЕ: На всех автомобилях с кондиционером устанавливаются трехскоростные электровентиляторы.

2. Главная блок-схема

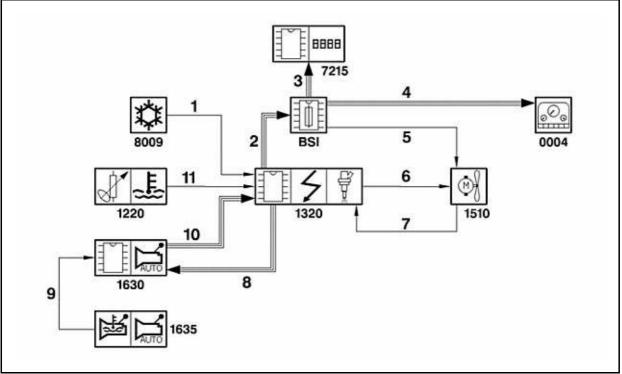


Рисунок : D4EP0BND

Обозначения:

• Простая стрелка : Классическая проводная связь

• Тройная стрелка : Мультиплексная связь

Стр. 1 из 5

	Органы управления				
BSI	Интеллектуальный коммутационный блок				
0004	Приборная панель				
1220	зонд определить температуры охлаждающей жидкости в системе двигателя				
1320	Компьютер двигателя				
1510	Электровентилятор				
1630	Компьютер автоматической коробки передач				
1635	Датчик температуры масла в автоматической коробке передач				
7215	Многофункциональный дисплей				
8009	Линейный датчик давления				

	Связи	
№ связи	Сигнал	Характер сигнала
1	Давление в системе охлаждения	Аналоговый
2	Информация о температуре охлаждающей жидкости в системе охлаждения двигателя. Сигнал неисправности о ненадлежащей температуре охлаждающей жидкости	CAN
3	Передача сообщения : Сообщение, предупреждающее о ненадлежащей температуре охлаждающей жидкости в системе охлаждения двигателя	VAN Комфорта
4	Информация о температуре охлаждающей жидкости в системе охлаждения двигателя. Сигнал неисправности о ненадлежащей температуре охлаждающей жидкости	VAN Комфорта
5	Управление блоком электровентиляторов охлаждения двигателя (только при средней скорости) (*)	Всё или ничего
6	Управление блоком электровентиляторов охлаждения двигателя	Всё или ничего
7	Информация о вращении электровентилятора системы охлаждения двигателя	Всё или ничего
8	Температура охлаждающей жидкости двигателя. Скорость автомобиля	CAN
9	Информация о температуре рабочей жидкости автоматической коробки передач	Аналоговый
10	Запрос на охлаждение автоматической коробки передач	CAN
11	Информация о температуре охлаждающей жидкости в системе охлаждения двигателя	Аналоговый

^(*) На автомобилях с трехскоростными электровентиляторами (автомобили с кондиционером) средней скоростью управляет блок BSI. Управление малой и большой скоростью остается без изменений (from the engine managemer ECU to the cooling fan).

3. Регулирование в зависимости от температуры охлаждающей жидкости

Датчик температуры охлаждающей жидкости, установленный на выходе, поставляет ЭБУ двигателя информацию о температуре охлаждающей жидкости в системе.

3.1. Параметр температуры

	Единственная скорость (Двигателя TU5)	Единственная скорость (Двигателя EW7)	(Двигателя	Двухскоростной (Двигателя DW10)	Трехскоростной (Вс типы двигателей на автомобилях с кондиционерами)
Пороговое значение вывода предупреждения об опасной температуре	118 °C	118 °C	118 °C	118 °C	118 °C
охлаждающей жидкости (Зажигание)					

Стр. 2 из 5

Пороговое значение вывода предупреждения об опасной температуре охлаждающей жидкости (Выключение)	115 °C				
Продолжительность последующей работы вентилятора	360 c	360 с	360 с	360 с	360 c
Порог температуры при последующем включении вентилятора	105 °C				
Пороговое значение температуры охлаждающей жидкости для малой скорости (Включение)	97 °C				
Пороговое значение температуры охлаждающей жидкости для малой скорости (Прерывание)	94 °C				
Пороговое значение температуры охлаждающей жидкости для большой скорости (Включение)	-	-	105 °C	105 °C	105 °C
Пороговое значение температуры охлаждающей жидкости для большой скорости (Прерывание)	-	-	102 °C	102 °C	102 °C
Температура включения вентилятора	97 °C				

- (*) Средняя скорость трехскоростного электровентилятора используется при работе кондиционера. Средней скоростью управляет блок BSI в зависимости от информации линейного датчика давления:
 - Давление линейного датчика для включения электровентилятора : 16 бар
 - Давление линейного датчика для выключения электровентилятора : 13 бар

3.2. Последующая вентиляция

После остановки двигателя ЭБУ двигателя включает работу вентилятора на малой скорости, если температура охлаждающей жидкости превышает установленный порог.

Электровентилятор системы охлаждения двигателя не включится в следующих случаях :

- В энергосберегающем режиме (*)
- При остановке работы электроники в блоке ЭБУ двигателя
- В режиме включения стартера
- (*) Режим, при котором устройство получает питание в течение некоторого времени (примерно 30 секунд) после выключения зажигания.

3.3. Аварийный режим работы

Неисправность датчика температуры охлаждающей жидкости в системе охлаждения двигателя влечет следующи события :

- Работа электровентилятора с большой частотой вращения
- Останов компрессора кондиционера
- Загорание на панели приборов сигнализатора STOP и контрольной лампы температуры охлаждающей

Стр. 3 из 5

жидкости (*)

- Вывод сообщения на многофункциональный дисплей
- Внесение информации о неисправности в память ЭБУ двигателя
- (*) (в зависимости от конфигурации).

4. Сбои в работе системы кондиционирования

Для охлаждения конденсатора функция BRAC блока управления двигателем посылает функции FRIC заданное значение скорости в зависимости от давления в контуре кондиционера.

Датчик линейного давления позволяет измерять давление в контуре охлаждения, что необходимо компьютеру управления двигателем для включения малой или большой скорости группы электровентилятора.

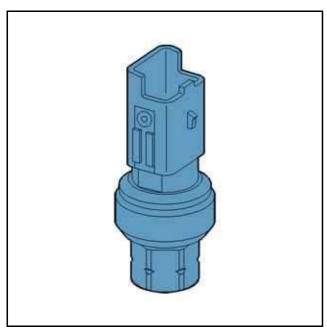


Рисунок: С5НР162С

8009: Линейный датчик давления.

4.1. Значение давления

	Включение	Включение	Включение	Выключение	Выключение	Выключение
	вентилятора	вентилятора	вентилятора	электровентилятора	электровентилятора	электровентилятор
	охлаждения	охлаждения	охлаждения	(Малая скорость)	(Средняя скорость)	(Большая скорость
	двигателя	двигателя	двигателя			
	(Малая	(Средняя	(Большая			
	скорость)	скорость)	скорость)			
Давление (10	16	22	8	13	18,5
бар)						

4.2. Аварийный режим работы

Неисправность датчика давления в системе охлаждения двигателя влечет за собой следующие события :

- Запрет на включение компрессора климатической установки
- Внесение информации о неисправности в память ЭБУ двигателя
- Электровентилятор больше не обслуживает систему кондиционирования

5. Сбои в работе автоматической коробки передач

Компьютер автоматической коробки передач типа AL4 может потребовать охлаждение теплообменника "охлаждающая жидкость/масло" от компьютера управления двигателем через сеть CAN. Только EW10J4 оснащен коробкой передач типа AL4.

Стр. 4 из 5

ПРИМЕЧАНИЕ: Датчик температуры масла установлен на гидроблоке автоматической коробки передач.

5.1. Параметр температуры

Пороговый параметр температуры масла, по достижении которого включается вентилятор	108 °C			
Пороговый параметр температуры масла, по достижении которого останавливается вентилятор	105 °C			
Пороговый параметр скорости, по достижении которого включается вентилятор, если скорость снижается				
	км/ч			
Пороговый параметр скорости, по достижении которого включается вентилятор, если скорость	30			
повышается	км/ч			

5.2. Аварийный режим работы

Неисправность датчика температуры масла в автоматической коробке передач ведет к следующему сценарию работы системы : ЭБУ автоматической коробки передач принимает за эталон параметр температуры охлаждающей жидкости в системе охлаждения двигателя.

Если датчик температуры охлаждающей жидкости двигателя неисправен, компьютер использует значение температуры охлаждающей жидкости, заданное по умолчанию.

Стр. 5 из 5